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Micro-engineered transducers, such as vibratory gyroscopes, accelerometers
and pressure transducers made from wafers of crystalline silicon, are becoming
increasingly common. These often contain ring-like components, the vibration
properties of which are crucial to the operation of the transducer. The stability of
the material properties of crystalline silicon is highly bene"cial to the performance
of these devices. However, the material has signi"cant anisotropy, which must be
properly accounted for in the design of the structure. Crystalline silicon has a cubic
structure with three principal planes. Two of these, the (111) and (100) planes, are of
particular interest since many devices are manufactured from silicon wafers that
are nominally cut parallel to these planes. The precise cut of silicon with respect
to the principal planes determines the form and degree of anisotropy in the
material properties around a structure. This paper focuses on the e!ects of
anisotropy on the natural frequencies and directional properties of the modes of
circular rings of rectangular cross-section, made from crystalline silicon. Both
in-plane and out-of-plane #exural modes are investigated using Lagrange's
equations. The e!ects of anisotropy are accounted for in the strain energy
formulation. General equations are given for directional variations in the elastic
moduli. These equations have been simpli"ed and linearized to allow analytical
expressions for the natural frequencies to be obtained for a number of special cases.
Results are presented for rings made from wafers that are cut nominally in the (100)
and (111) principal planes. The e!ects of small departures in the plane of the wafer
cut from these principal planes is investigated. Frequency splitting is predicted
between pairs of similar modes which would be degenerate with equal natural
frequencies, if the ring were made from an isotropic material. Di!erences are found
between the frequency predictions obtained using general and simpli"ed
expressions for the elasitic moduli. These are explained on the basis of a Fourier
analysis of the variation in the elastic properties around the ring.
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1. INTRODUCTION

There is large and rapidly increasing market for low cost, miniaturized rate
gyroscopes and accelerometers. These are required for applications as diverse as
automotive safety and navigation, bio-mechanics and aids for the disabled, and
virtual reality. Developments in micro-engineering techniques o!er signi"cant
advantages for the manufacture of small devices in terms of cost and volume of
0022-460X/99/460011#25 $30.00/0 ( 1999 Academic Press



12 R. ELEY E¹ A¸.
production. Several designs of rate gyroscope are available which rely on the
inertial properties of a vibrating structure. One successful device is based on
a vibrating, micromachined silicon ring structure [1] and others are based on
cylinders and hemispherical shells. When designing such instruments, the e!ects
of small variations in component dimensions and material properties must be
carefully considered because of their e!ects on natural frequencies, which must be
very accurately controlled. For example, references [2, 3] provide a detailed
analysis of the e!ects of small thickness variations on the in-plane vibration of
rings, relevant to the design of vibratory gyroscopes. Increasingly, crystalline silicon
is being used as the most suitable material for micro-engineered devices. The
stability of its material properties and suitability for forming by micro-machining
techniques make the material especially attractive. However, it is well known that
crystalline silicon exhibits signi"cant anisotropy, the e!ects of which must be
considered.

Crystalline silicon has three principal planes denoted as (100), (110) and (111) in
Miller indices [4]. In practice, mainly due to the capabilities of the etching
processes used to form structures from crystalline silicon [5] the (111) and (100)
planes are especially important and the vast majority of micro-machined devices
are fabricated from silicon wafers which are cut from ingots along the (111) or (100)
planes. There is thus a practical need to study the dynamic properties of rings
produced from wafers cut in these planes. Furthermore, due to process limitations,
it is inevitable that the silicon wafers will not lie exactly in the required planes and
the e!ects of small deviations of the wafer plane from the (111) and (100) need to be
considered.

Perfect, circular rings manufactured from isotropic materials have modes of
vibration which appear as degenerate pairs at an equal frequency. In practice, small
dimensional imperfections and variations in material properties cause small splits
between the natural frequencies in a given pair. When a vibrating ring is being used
as a rate gyroscope [1, 2] there is a requirement for the natural frequencies of
a particular pair of modes to be as closely matched as possible in order to maximize
sensitivity. Frequency splits of the order of 0.01% are practically important. The
potential e!ect of material anisotropy to introduce frequency splits is therefore of
signi"cant interest. For the reasons given special emphasis will be placed on the
elastic properties of silicon in planes which lie close to the (111) and (100) planes.
The present paper is structured as follows.

A brief review of the relevant, established anisotropic stress}strain relationships
for crystalline silicon is given. These can be manipulated to give general expressions
for the elastic moduli on any plane once the direction cosines with respect to the
crystal axes are known [6}8]. Reference [9] particularizes the general elastic
modulus expressions to predict material property variations in planes which depart
by small angles from the principal (111) plane. Using the same approach, the
present paper develops expressions for the directional variations of the elastic
moduli in the (100) plane and in planes close to it. These expressions are presented
in general form and also in a simpli"ed form for small angles of deviation from
the principal planes. Once the appropriate material property relationships are
established, the natural frequencies, both for in-plane and out-of-plane modes of
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vibration, are investigated, via Lagrange's equations using generalized co-ordinates
which are based on the eigenvectors for isotropic circular rings. The e!ects of
anisotropy are accounted for in the strain energy. It is convenient to consider the
(111) and (100) planes separately.

Finally, numerical examples are given for in-plane and out-of-plane modes
with di!erent numbers of nodal diameters. The relationship between the material
property variations and number of nodal diameters is investigated. The
combinations which lead to frequency splitting are explained using results from
a Fourier analysis of the material property variations.

2. ANISOTROPY IN SINGLE-CRYSTAL SILICON

Crystalline silicon has a face-centred cubic diamond structure [4]. In such
crystals, the inter-atomic bonding responsible for linear elastic behaviour is
intrinsically anisotropic. The resulting, direction dependent, variation of the elastic
constants is of speci"c interest because it a!ects the natural frequencies of
structures, such as rings, made from crystalline silicon. It is useful at this point to
summarize the principal results of anisotropic linear elasticity which are relevant to
the current work.
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1
, p

2
, p

3
), and shear (q

12
, q

31
, q

23
)

stresses and the direct (e
1
, e

2
, e

3
) and shear (c

12
, c

23
, c

31
) strains on the faces of the

crystal cube (see Figure 1) is well known [7], and can be expressed as

G
e
1

e
2

e
3

c
23

c
31

c
12

H"C
S
11

S
12

S
12

0 0 0

S
12

S
11

S
12

0 0 0

S
12

S
12

S
11

0 0 0

0 0 0 S
44

0 0

0 0 0 0 S
44

0

0 0 0 0 0 S
44

D G
p
1

p
2

p
3

q
23

q
31

q
12

H , (1)

where S
11

, S
12

and S
44

are independent elastic compliance constants which, for
crystalline silicon, have the following values [8]: S
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A cubic material has three principal planes, denoted as (100), (110) and (111) in
Miller indices, as illustrated in Figure 2. The cut of silicon wafer with respect to
these principal planes determines the extent of anisotropy and the variations in the
material properties in devices made from the wafer. Generally, the directional
variations of the Young's and shear moduli are given by equations (2) and (3)
respectively [9]:
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Figure 1. Stress components on a cubic crystal.
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and l
s
, m
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, and n

s
are the direction cosines of a line of applied stress with respect to

the material axes X,>, Z respectively. The argument (h) simply denotes that the
line of applied stress lies at an angle h from a suitable reference direction in a plane
which, for the moment, is arbitrary. Relevant particular cases will be de"ned later.
Expression (4), involving the direction cosines, can be manipulated for di!erent
orientations of applied stress, and is a key relationship in the development of the
analysis.

3. MATERIAL PROPERTIES CLOSE TO (111) AND (100) PLANES

Devices are commonly manufactured from silicon wafers that are nominally cut
in the (111) and (100) planes. It can be shown that the (111) plane has isotropic
elastic moduli. Hence, material properties do not vary with direction within
this plane, which is unique and ideal for some applications. Unfortunately,
manufacturing tolerances on the alignment of cut of silicon wafer relative to the



Figure 2. The principal planes of a cubic crystal.
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(111) plane lead to variations in the material properties. In the (100) plane, the
material properties are anisotropic and vary with direction in the plane.
Misalignment of the cut of the wafer relative to the (100) plane leads to additional
variations in the moduli.

The general equations, equations (2) and (3), for the material properties can be
used to calculate the variations in Young's and shear moduli in any plane, once the
direction cosines of the line of applied stress are known. A convenient way to
achieve this for our present purposes, is to manipulate expression (4) to "nd the
direction cosines of lines of applied stress in planes which lie at some known angle
relative to the principal planes. This is explained in detail for two particular cases in
the following section.



Figure 3. De"nition of a plane tilted from the (111) plane.
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3.1. ELASTIC CONSTANTS ON PLANES TILTED FROM THE (111) PLANE

The (111) plane is practically important since the material properties are iso-
tropic. Small deviations from this plane need to be considered since they introduce
variations in the material properties.

Refer to Figure 3 and consider the (111) plane, the normal to which has equal
direction cosines (1/J3), relative to the material axes X, >, Z. By varying one
direction cosine, say l

p
, and keeping the other two equal, (m

p
"n

p
), a new tilted

plane is made, which makes angle d with the (111) plane. In the tilted plane, the
angular variations of the Young's and shear moduli are calculated by considering
a line of applied stress which lies in the plane at angle h relative to a given reference
line. The reference line and the line of applied stress have direction cosines (l

r
, m

r
, n

r
)

and (l
s
, m

s
, n

s
) respectively. To simplify the analysis, without loss of generality, the

reference line is chosen to lie in the y}z plane so that l
3
"0 (see Figure 3).

The normal to the tilted plane is perpendicular to both the line of applied stress
and to the reference line and has direction cosines (l

p
, m

p
, n

p
) where only l

p
is varied.

The direction cosines of the line of applied stress can be found in terms of known
quantities as follows. Recall that the angle h between two intersecting lines is given
by
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It follows for any line with direction cosines (l, m, n) that

l2#m2#n2"1. (6)

Equations (5) and (6) can be manipulated using the direction cosines of the reference
line, the line of applied stress and the normal to the tilted plane. For the case where
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Substituting equation (9) into equation (6) for the line of applied stress, it follows
that
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Equations (9) and (10) can be substituted into expression (4) to give the following
expression for F (h), for lines in a plane which lies at angle d (de"ned by l

p
) from the

(111) plane:
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The direction cosines for the (111) plane are all equal (1/J3). The angle subtended
by the (111) plane with respect to the material axes (X, >, Z) is
a
0
"cos~1(1/J3)"54)743. The direction cosine with respect to the x-axis for

a tilted plane whose normal is at an angle d to the normal of the (111) plane is given
by

l
p
"cos(a

0
#d). (12)

[Note that, due to the symmetry associated with the (111) plane, the e!ect would be
the same if we chose to de"ne d about any line in the (111) plane. The particular
reference direction chosen here is simply convenient for the analysis.]

Equations (11) and (12) can now be used in conjunction with equations (2) and (3)
to give the elastic moduli for lines in any plane at angle d to the (111) plane.

It follows from equations (11) and (12) that, for the (111) plane for which d"0,

F
(111)

(h)"1
4
. (13)

This shows that F is independent of h for the (111) plane and, consequently, the
elastic properties are the same in all directions within the (111) plane. Using
equation (13) in conjunction with equations (2) and (3) gives Young's modulus and
shear modulus values for the (111) plane as 1)7]1011Pa and 6)22]1010Pa
respectively. Other values of d can be substituted into equations (12) to give l

p
for

any plane whose normal is at an angle d to the (111) plane normal. Equations (11),
(2) and (3) can then be used to "nd the appropriate elastic moduli.

For illustration, Figure 4 shows the directional variation in the Young's modulus
in the (111) plane and in planes which deviate from the (111) plane for values of d in



Figure 4. Variations of Young's modulus on planes close to the (111) plane numbers (0), (1), (2), (3),
(4) refer to the angle of deviation, d from the (111) plane.
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the range from 1 to 43. It can be seen that the predominant variations have 2h and
4h periodicity. The pattern of variation in the shear modulus is a mirror image
about the mean value compared to Figure 4, with the same predominant 2h and 4h
periodicity. A plane with 43 deviation gives variations of #2 and !4% in the
Young modulus and #3 and !1% in the shear modulus. Other, higher order,
variations are present. These are not visually obvious but, as will be shown later,
they can be the cause of frequency splitting in some modes.

The reciprocal form of equations (2) and (3) inhibits full interpretation in cases
where F(h) is not constant. However, for small values of d, simple forms of
equations (2) and (3) can be derived by setting sin d"d and cos d"1 in equation
(12). Substituting into equation (11) and retaining only linear terms in d then gives

F(d, 111) (h)+1
4
#0)2357d (cos 2h!cos 4h). (14)

Substitution of equation (14) into equations (2) and (3) allows E(h) to be written,
after some rearrangement, as
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EI is Young's modulus on the (111) plane with a numerical value of 1)7]1011Pa and
e"1)65]10~12Pa~1. Noting that, EI ed@1, the expression in square brackets in
equation (15) can be expanded using the binomial expansion. Neglecting terms of
second and higher order in d leads to the following linearized expression:

E(h)+EI M1#EI ed(cos 2h!cos 4h)N. (18)

In similar manner, the shear modulus can be expressed as

G(h)+GI M1!GI gd (cos 2h!cos 4h)N, (19)

where GI ("6)22]1010Pa) is the shear modulus on the (111) plane, and
g"3)305]10~12Pa~1. The practical value of the above approximations will be
considered later in the paper when numerical examples are presented.

3.2. ELASTIC CONSTANTS ON PLANES TILTED FROM THE (100) PLANE

The (100) plane of silicon exhibits anisotropy and planes which depart from the
(100) plane show additional variations in the elastic moduli. The orientation of
a plane which is tilted relative to the (100) plane can be described by means of
a rotation about any two of the principal crystal axes or a combination of rotations
as shown in Figure 5. Rotation of the (100) plane by c

1
about the axis OZ, produces

plane-1, which is subsequently rotated by c
2
about the axis O>

1
, to give the plane-2.

By considering a point on the axis OX
2
, which is normal to plane-2 and resolving

its co-ordinates into components along the crystal axes OX>Z, it can be shown
Figure 5. De"nition of planes tilted from the (100) plane.
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that the direction cosines for the normal to plane-2 relative to the crystal axes are
given by
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The reference line from which the direction of loading is de"ned is conveniently
taken to be O>

2
since this line lies in both plane-l and plane-2. It can then be shown

that the direction cosines of O>
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reference line. Using equations (5) and (6) for the normal to the plane and the
reference line and taking small-angle approximations for c
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Substitution of equations (22), into expression (4) gives the following expression for
F(h), valid for small deviations from the (100) plane, in which terms in c

1
, c

2
of third

and higher order have been neglected.

F
(c,100)(h)"(1#3c2

1
#3c2

2
)sin2 h cos2 h#c2

1
cos4 h#c2

2
sin4 h

#2c
1
c
2
cos3 h sin h. (23)

[Note that equation (23) does not contain any terms of order c. The e!ect of
deviation from the (100) plane only appears in the form of terms of order c2. This is
in contrast to equation (14) which shows that the e!ect of small deviations from the
(111) plane appear in the corresponding relationship in the form of linear terms of
order d]. Substitution of equation (23) into equations (2) and (3) gives the required
expressions for E(h) and G(h). For the (100) plane for which c

1
"c

2
"0, equation

(23) can be written as

F
(100)

(h)"sin2 h cos2 h"1
8
(1!cos 4h). (24)

Hence, there will be a strong 4h periodicity to the (100) plane moduli, together with
higher order harmonics at multiples of 4h. For silicon, Young's modulus varies by
&$13% and the shear modulus by &$12)3% about their mean values of
1)5]1011 and 7)1]1010Pa respectively.

For small deviations from the (100) plane, appropriate values of c
1

and c
2

can be
substituted into equation (23) to show the variations in moduli. For illustration,
Figure 6 shows the directional variation of Young's modulus on the (100) plane and
on a plane de"ned by a 43 rotation (either c

1
or c

2
) about one of the material

principal axes (O> or OZ). The changes due to either c
1
or c

2
are small compared to

those for deviations from the (111) plane, and are also small compared to the basic
variation on the (100) plane. For combined rotations when both c

1
and c

2
are

non-zero the modulus variations also have 4h periodicity.



Figure 6. Variations of Young's modulus on planes close to the (100) plane numbers (0), (4) refer to
the angle of deviation, c from the (100) plane.
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4. NATURAL FREQUENCIES OF FLEXURAL VIBRATION

The expressions derived in Section 3 can be used in conjunction with an energy
method to predict the e!ects of material anisotropy on the natural frequencies of
#exural vibration of circular rings of rectangular cross-section. For a circular ring
made from isotropic material, modes with a given harmonic number appear as
degenerate pairs. The natural frequencies of the two modes in a given pair are
equal and the circumferential position of the modes is arbitrary. Dimensional
imperfections are known to introduce splitting between the natural frequencies of
mode pairs [11] and "x the mode positions in the ring. It will be demonstrated here
that material anisotropy also introduces frequency splitting and "xes the modal
positions. The magnitude and pattern of splitting is shown to depend on the plane
of the silicon wafer from which the ring is manufactured.

In-plane and out-of-plane vibration are considered separately. The general approach
in each case is to consider the behaviour of pairs of modes with a given harmonic
number. The displacement of the ring is represented using generalized co-ordinates
based on the eigenfunctions of a circular isotropic ring. Lagrange's equation is used to
set up equations of motion from which the natural frequencies and the circumferential
positions of the corresponding modes can be found for the anisotropic ring.

4.1. IN-PLANE MODES

4.1.1 Generalized co-ordinates and displacements

For a pair of in-plane modes of vibration with n nodal diameters, the radial and
tangential displacements, w, v, at some angular position h (see Figure 7), can be



Figure 7. De"nition of ring displacement components.
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expressed in terms of generalized co-ordinates Q
11

(t) and Q
12

(t) as follows [11, 12]:
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Here, h"0 is assumed to coincide with the reference direction for h used in the
expressions for the material properties presented in Section 3.

4.1.2. In-plane kinetic energy

For the in-plane modes, the kinetic energy due to bending [13] is given by
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where o, A and a are the density, cross-sectional area and mean radius of the ring
respectively.

4.1.3. In-plane strain energy

In general terms, assuming the ring to be thin, the strain energy due to in-plane
bending, ;

IP
, can expressed as [13]
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I
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where I
z
is the second moment of area of the ring section about the centroidal axis

normal to the plane of the ring. The variable Young's modulus, E(h!n/2), can be
expressed in a number of di!erent ways as described in Section 3. The argument
(h!n/2) accounts for the fact that the bending stresses in the ring at position h are
directed at n/2 to the radius vector at that point. The reciprocal form of equation
(2), which de"nes E (h), makes a general analytical evaluation of the integral in
equation (27) di$cult, if not impossible. In general, therefore, it will be necessary
to evaluate equation (27) numerically for particular cases. As an alternative to
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numerical integration, the following analytical approach is also presented with the
aim of providing data for numerical comparison, and as an aid to insight. In this,
the linear approximation of Young's modulus for small deviations from the (111)
plane, given by equation (18), will be used so that the strain energy can be expressed
as
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n"1 corresponds to rigid-body displacement and the resulting zero strain energy
is thus expected. The term in square brackets in equation (28) is zero for all n except
n"2. This is related to the presence of the cos 4h term in equation (18).

4.1.4. In-plane natural frequencies

The equations of motion for free undamped vibration can now be derived using
Lagrange's equation [14] in the form
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where ¹ and ; are the kinetic and strain energies respectively. Substituting
equations (26) and (28) into equation (29) it can be shown that the in-plane
equations of motion are given by
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It follows from equations (30) that the natural frequencies, u
I1

and u
I2

, of a pair of
in-plane modes with a given value of n can be expressed in non-dimensional form as
follows:
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where f 2
I
"EI I

z
/oAa4.

The fact that the equations of motion, equations (30), occur as an uncoupled pair
indicates that the mode shapes of the orthotropic ring are aligned with the original
displacement patterns associated with the relevant generalized co-ordinate. This is
a consequence of the choice of datum for h for the generalized co-ordinates and for
the anisotropy description, and of the symmetry of the anisotropy about h"0.

For the case where the material properties are isotropic, (d"0), equations (31)
and (32) lead to the expected conclusion that the natural frequencies will be the
same for a pair of modes with the same value of n. It will be noted that they also
imply that, using the linear approximation for the material properties when dO0,
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frequency-splitting is only predicted for the case where n"2. This matter will be
revisited later.

4.2. OUT-OF-PLANE MODES

The general procedure for dealing with out-of-plane modes is the same as that
used for in-plane modes.

4.2.1. Generalized co-ordinates and displacements

For out-of-plane modes of vibration, the displacement of the ring section consists
of a combination of translation, u, normal to the plane of the ring, and rotation, /,
about the centroidal axis, as shown in Figure 7. Introducing out-of-plane generaliz-
ed co-ordinates, Q

O1
and Q

O2
, the displacements for modes with i nodal diameters

can be expressed as [12]

G
u
/H"Q

O1
(t)G

1
!i2mH cos ih#Q

O2
(t)G

!1
i2m H sin ih (33)

in which

m"
1
a C

1#k
1#i2kD where k"

GI C
EI I

x

and C"

cr3
t
a3
l

r2
t
#a2

l

.

In the above, a is the mean radius of the ring, r
t
and a

l
are the radial thickness and

axial length of the ring respectively and c is a coe$cient with numerical value in the
range 0)28}0)33 [12], which depends on the ratio r

t
/a

l
: I

x
is the second moment of

area of the ring section for out-of-plane bending. In the present analysis, the
assumed displacements associated with the generalized co-ordinates are based on
the mode shapes of isotropic rings. It is therefore reasonable to use the (111)-plane
values, EI and GI , of the elastic moduli to de"ne the sti!ness ratio, k.

4.2.2. Out-of-plane kinetic energy

For out-of-plane motion, the kinetic energy, due to bending and twisting, is given
by

¹
OP

"P
2n

0

1
2

oAauR 2dh#P
2n

0

1
2

oJa/Q 2dh
(34)

"

oan
2 GA#

Ji4
a2 C

1#k
1#i2kD

2

H (QQ 2
O1

#QQ 2
O2

),

where J is the polar second moment of area of the ring sections.

4.2.3. Out-of-plane strain energy

The strain energy due to bending and twisting [15] can be expressed as

;
OP

"

I
x
a

2 P
2n

0

EAh!
n
2BK2

1
dh#

Ca
2 P

2n

0

GAh!
n
2BK2

2
dh (35)
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where

K
1
"

1
a A

1
a

L2u
Lh2

!/B , K
2
"

1
aA

L/
Lh

#

1
a

Lu
LhB . (36)

In general, equation (35) can be evaluated numerically for any E(h) and G (h). If,
however, the linear approximations for the elastic moduli on planes at a small angle
d from the (111) plane, given by equations (18) and (19), are substituted into
equation (35), the out-of-plane strain energy ;

OP
follows as

;
OP

"

EI I
x
n i4 (i2!1)2k2

2a3(1#i2k)2 AQ2
O1

#Q2
O2

#C
EI ed
2

(Q2
O2

!Q2
O1

)D
i/2
B (37)

#

GI Cni2 (i2!1)2
2a3(1#i2k)2 AQ2

O1
#Q2

O2
#C

GI gd
2

(Q2
O2

!Q2
O1

)D
i/2
B .

As with the in-plane modes, i"1 indicates rigid-body motion and the corresponding
strain energy is zero. Furthermore, the term in square brackets in equation (37) is
zero for all i except for i"2.

4.2.4. Out-of-plane natural frequencies

Substituting equations (34) and (37) into equation (29) gives the equations of
motion for out-of-plane modes as

QG
O1

#u2
O1

Q
O1

"0, QG
O2

#u2
O2

Q
O2

"0 (38)

in which the natural frequencies can be expressed non-dimensionally as

X2
O1

"

u2
O1
f 2
O

"

i2(i2!1)2 k
(1#i2k)2#d2i4 (1#k)2G(1#i2k)#C

d
2

(GI g#i2kEI e)D
i/2
H , (39)

X2
O2

"

u2
O2
f 2
O

"

i2(i2!1)2 k
(1#i2k)2#d2i4 (1#k)2G(1#i2k)!C

d
2

(GI g#i2kEI e)D
i/2
H , (40)

where f 2
O
"EI I

x
/oAa4 and d2"J/Aa2.

As in the case of the in-plane modes, the equations of motion, equations (38), are
uncoupled. Again, this is due to the choice of datum for h and the symmetry of the
anisotropy about h"0.

5. NUMERICAL EXAMPLES

As indicated in section 4, when calculating the natural frequencies the strain
energy can be evaluated either numerically or analytically, depending on the
complexity of the expressions for the variation in the elastic moduli. Results will be
presented for natural frequencies calculated numerically using the full expressions
for the elastic moduli (equations (2), (3), (11) and (12)) on planes at small angular
deviations from the (111) plane. They are compared with the analytical expressions
(equations (31), (32), (39) and (40)) obtained using the linearized expressions.
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Frequency variations obtained numerically using elastic moduli for the (100)
plane and increasing deviations from this plane are also shown. The numerical
values given apply for a silicon ring for which d2"8)83]10~4 in equations (39)
and (40).

5.1. FREQUENCY SPLITS IN RINGS CLOSE TO THE (111) PLANE

5.1.1. ;sing exact expressions for the elastic moduli

The natural frequencies have been calculated using the exact expressions for the
elastic moduli given by equations (2) and (3) and the appropriate expression for
F(h), equation (11). These have been substituted into the strain energy expressions,
equations (27) and (35) respectively, for in-plane and out-of-plane modes. Numer-
ical results are shown for small deviations in the range 0}43, from the (111) plane
and for modes with two, three and four nodal diameters. The corresponding
frequency predictions, obtained using the simpli"ed expressions for the elastic
moduli, equations (18), (19), (31) and (32), are given in section 5.1.2.

5.1.1.1. Fourier analysis of elastic moduli. To help explain the di!erences between
the two sets of natural frequency predictions, it is useful to consider the harmonic
content of the elastic modulus variations with respect to h, which de"nes the
direction of the line of applied stress. It is clear from equations (18) and (19) that the
simpli"ed expressions only contain 2h and 4h components. However, a Fourier
analysis of the general expressions for E (h) and G (h) shows that other harmonic
components are present, although at much reduced magnitude compared to the 2h
and 4h components. The form of equations (2), (3), (11) and (12) precludes a simple
analytical determination of the Fourier coe$cients when dO0 and they have been
calculated numerically so that E(h) can be expressed in the form

E(h)"E
O
#

M
+

m/1

[E
mC

cosmh#E
mS

sinmh].

The shear modulus G(h) can be treated in the same way.
Table 1 shows the magnitude of the Fourier coe$cients of the exact form of E(h)

on planes close to the (111) plane and, for future reference, also shows the Fourier
coe$cients of the linearized version of E(h) as given by equation (18). It can be seen
that, on the (111) plane (i.e., for d"0), only the constant term is non-zero. For
non-zero values of d, the Fourier analysis shows a constant component together
with even-order harmonic, cosine components. The sine components are all zero,
due to the choice of reference direction for h. For the range of values of d con-
sidered, the 2h and 4h cosine components are generally two orders of magnitude
smaller than the constant value. The magnitude of each harmonic increases as
d increases. Higher order harmonics are also present, but at a much reduced
magnitude. The fact that the odd harmonic components are zero is compatible with
the symmetry in the distribution as seen in Figure 4. The absence of the odd-valued
harmonics and the sine components allows the expression for the Young's modulus



TABLE 1

Fourier components of exact and linearized E(h) close to the (111) plane

d (deg) E
0

(Pa) E
2C

(Pa) E
4C

(Pa) E
6C

(Pa) E
8C

(Pa)

;sing full expression
0 1)6974]1011 0)00 0)00 0)00 0)00
1 1)6973]1011 0)845]109 !0)832]109 !0)416]107 0)204]107
2 1)6970]1011 1)706]109 !1)654]109 !1)672]107 0)802]107
3 1)6964]1011 2)582]109 !2)467]109 !3)784]107 1)780]107
4 1)6957]1011 3)470]109 !3)270]109 !6)760]107 3)117]107

;sing linear expression
0 1)700]1011 0)00 0)00
1 1)700]1011 0)832]109 !0)832]109
2 1)700]1011 1)665]109 !1)665]109
3 1)700]1011 2)497]109 !2)497]109
4 1)700]1011 3)329]109 !3)329]109
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to be written in the form

E(h)"E
o
#

4,6,8,10
+

m/2

E
mC

cosmh. (41)

To see how the spatial harmonic content of the elastic moduli, shown above,
in#uences the pattern of frequency splitting between modes, note that, using
equation (41), the integral for the in-plane strain energy, equation (27), can be
written in the form

;"

I
z

2a3 P
2n

0
AEo

#

4,6,8,10
+

m/2

[E
mC

cosmh]B (=
1
sin nh#=

2
cos nh)2dh, (42)

where =
1

and =
2

are the amplitudes of the displacement components. When
integral (42) is evaluated, the constant part of the elastic modulus, E

o
, gives rise to

non-zero contributions to the strain energy which depend only on=2
1

and=2
2

but
not on =

1
=

2
. The terms involving E

mC
give rise to integrals of the form

I"E
mC P

2n

0

cosmh[=2
1,2

cos 2nh#=
1
=

2
sin 2nh] dh. (43)

The outcome of the integral, equation (43), is zero for mO2n but non-zero when
m"2n, in which case the sign of = will be di!erent depending on whether the
integral involves =

1
or =

2
. This implies that the natural frequencies of pairs of

modes with n nodal diameters will be split when m"2n. Thus, the Fourier analysis
indicates that for non-zero values of d, the exact expressions for the moduli will lead
to predicted frequency splits in modes for which n"2, 3, 4, 5,2 . On the (111)
plane absence of any harmonics means that the natural frequencies of a pair of
modes will be equal for a given value of n.



Figure 8. E!ect of deviation from the (111) plane on frequency factor for in-plane modes with n"2
(exact expression for E(h)).

Figure 9. E!ect of deviation from the (111) plane on frequency factor for in-plane modes with n"3
(exact expression for E(h)).
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5.1.1.2. In-plane modes. Figure 8 shows the variation in non-dimensional natural
frequencies, X

11
, X

12
, obtained numerically using the full expressions for the elastic

moduli, for in-plane modes with n"2. As expected the frequency values are equal
on the (111) plane where the material properties are isotropic. As the angle of
deviation increases, one frequency increases whilst the other decreases. Both values
show a sensibly linear variation with angle of deviation from the (111) plane for the
range of values of d considered and the split is symmetrical about the (111) value.
Figures 9 and 10 show the variation of the natural frequencies of the modes for
which n"3 and 4. The pattern of behaviour is somewhat di!erent for these modes.
Both frequencies in a given pair decrease slightly and frequency splitting is



Figure 10. E!ect of deviation from the (111) plane on frequency factor for in-plane modes with
n"4 (exact expression for E(h)).
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observed, albeit at a much reduced level compared to the n"2 modes. This is
compatible with the fact the 6h and 8h coe$cients of E(h) are two orders of
magnitude smaller than the 4h component. The slight reduction in both frequencies
for n"3 and 4 is associated with the slight reduction in E(h) as d increases.
Therefore, it is expected that when n"2 the frequencies will be a!ected greatest
and for higher values of nodal diameter the e!ects of anisotropy are reduced.
A deviation of 43 produces frequency splits of 0)97, 0)02 and 0)01% of the (111)
values, respectively, in the natural frequencies of modes for which n"2, 3 and 4.

5.1.1.3. Out-of-plane modes. Table 2 shows the predicted natural frequencies of
out-of-plane modes for i"2, 3, 4. Each pair of out-of-plane modes with the same
value of i has equal natural frequencies on the (111) plane, as expected. The
variation of the natural frequencies with deviation from the (111) plane is very
similar to those presented for the in-plane modes as shown in Figures 8}10. When
i"2, the frequencies vary sensibly linearly, one increasing and one decreasing. The
frequencies of modes for which i"3 and 4 both decrease as the angle of deviation
increases from the (111) plane. The frequency splits at an angle of deviation of 43 are
0)92, 0)02 and 0)01% of the value on the (111) plane for modes for which i"2, 3 and
4 respectively.

The explanation of the pattern of frequency splitting in relation to the Fourier
coe$cients of E(h) and G(h) is the same as that given for in-plane modes.

5.1.2. ;sing linearized expressions for the elastic moduli

The linearized expressions for the material properties, equations (18) and (19), are
derived from a binomial expansion of equations (2) and (3) with F(h), given by
equation (14), where only the linear term in d is retained. It is clear that equations
(18) and (19) only contain 2h and 4h harmonic variations. Table 1 shows the 2h and
4h harmonic components for the linearized expression. It can be seen that the



TABLE 2

Non-dimensional natural frequency factors for out-of-plane modes for planes close to
the (111) plane

i"2 i"3 i"4

d (deg) X
O1

X
O2

X
O1

X
O2

X
O1

X
O2

0 2)7002 2)7002 7)6043 7)6043 14)5545 14)5545
1 2)6971 2)7033 7)6040 7)6041 14)5541 14)5540
2 2)6938 2)7063 7)6033 7)6037 14)5530 14)5527
3 2)6905 2)7091 7)6022 7)6030 14)5512 14)5505
4 2)6871 2)7119 7)6007 7)6020 14)5489 14)5477
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magnitude of these components di!er very little to those obtained from the exact
expression, the maximum di!erence being &4)1% in the 2h component and 1)8%
in the 4h component. Therefore, it is expected that using the linearized expression
for E(h) in the strain energy integral will lead to predicted splits in the modes with
two nodal diameters that are of the same order as those obtained using the exact
expression for E(h).

If terms of order d2 are retained in the binomial expansion, it can easily be shown
that the resulting approximate expressions for E(h) and G(h) would contain 2h, 4h,
6h and 8h components as seen for the full expressions. The magnitudes of the 2h and
4h components di!er by only a small amount from the components in the full
expression. However, the coe$cients of the 6h and 8h harmonics are found to be in
error by about 50%. These di!erences would lead to discrepancies in the predicted
natural frequencies for modes with three and four nodal diameters. Hence, the
linearized version of the binomially expanded expression for the elastic moduli
leads to good predictions of natural frequencies for modes with two nodal dia-
meters, but the exact form of E(h) and G(h) should be used for all other modes.

5.1.2.1. In-plane modes. Using the linearized expressions for the elastic moduli, it
follows from equations (31) and (32) that the non-dimensional natural frequencies
for n"2 modes are given by

X
I1,I2

"S
36
5 A1$

EI ed
2 B . (44)

The frequencies are equal on the (111) plane and as the angle of misalignment
increases, one frequency increases and one decreases. If the numerical results from
equation (44) were plotted in Figure 8, the points would be visually coincident with
the existing points generated using the full expressions for the elastic moduli. At an
angle of deviation of 43, equation (44) gives frequency predictions which are
generally within 0)07% of the &&exact'' predictions and the frequency split is 0)97%
of the (111) plane frequency which, to two percentage decimal places, is the same as
the prediction obtained using the full expressions.
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5.1.2.2. Out-of-plane modes. Similarly, for the out-of-plane modes, it follows from
equations (39) and (40) that the non-dimensional natural frequencies for i"2
modes are given by

X
O1,O2

"S
36k

(1#4k#16d2(1#k)2)C1#4k$
d
2

(GI g#4kEI e)D. (45)

According to equation (45), the natural frequencies for i"2 vary in a similar
manner to that shown by the in-plane n"2 modes. At an angle of deviation of 43,
the frequencies are split by 0)92% which is identical to the predicted split when the
full expressions are used. Thus, for modes with two nodal diameters, equations (44)
and (45) provide simple and accurate expressions for calculating the natural
frequencies of rings which lie close to the (111) plane.

5.2. FREQUENCY SPLITS IN RINGS CLOSE TO THE (100) PLANE

The analysis presented for planes tilted from the (100) plane allows deviations
about one crystal axis (c

1
or c

2
individually) or a combined rotation (c

1
and

c
2

simultaneously) to be examined. The variations in elastic moduli are similar if
either c

1
or c

2
is equal to zero, allowing rotation about one axis only. Equations (2),

(3) and (23) which de"ne the elastic moduli on planes at small angular deviations
from the (100) plane are substituted into the strain energy expression to show the
e!ects on the natural frequencies.

Table 3 shows the results from a Fourier analysis on the material properties for
the (100) plane using equations (23) and (2). On the (100) plane, there is a large
constant term together with 4h, 8h, 12h, etc., harmonics of relatively smaller
magnitude. This would be expected to give rise to frequency splits only in modes
with even numbers of nodal diameters. On planes tilted about one principal axis
from the (100) plane, the Fourier analysis shows additional 2h, 6h, 10h,2, compo-
nents, but these are much smaller (]10~2}10~3) in magnitude compared to the 4h
and 8h components. These would give rise to split frequencies for #exural modes
with odd numbers of nodal diameters, but the splits will be much smaller due to the
magnitude of the corresponding Fourier coe$cients of the elastic moduli.
TABLE 3

Fourier components of E(h) on planes close to the (100) plane

c
2

(deg)
(c

1
"0) E

0
(Pa) E

2C
(Pa) E

4C
(Pa) E

6C
(Pa) E

8C
(Pa)

;sing full expression
0 1)4901]1011 0)00 !1)938]1010 0)00 1)260]109
1 1)4905]1011 !0)208]108 !1)940]1010 0)279]107 1)263]109
2 1)4916]1011 !0)833]108 !1)946]1010 1)124]107 1)270]109
3 1)4935]1011 !1)880]108 !1)957]1010 2)545]107 1)282]109
4 1)4961]1011 !3)350]108 !1)972]1010 4)564]107 1)300]109



Figure 11. E!ect of deviation from the (100) plane on frequency factor for in-plane modes with
n"2.

Figure 12. E!ect of deviation from the (100) plane on frequency factor for in-plane modes with
n"3.
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5.2.1. Deviations about one axis

5.2.1.1. In-plane modes. Figure 11 shows the frequency variations for n"2 modes,
which are split on the (100) plane by 6)51%. The upper and lower frequencies
increase by 0)24 and 0)15% respectively as the angle of deviation about the
principal axis is increased to 43. The slight increase in both frequencies (&0)2%) is
consistent with the small increase (&0)4%) in the Young modulus value. At this
maximum rotation, the frequency split is 6)6% of the mean value. For n"3, the
natural frequencies are not split on the (100) plane. As the angle of deviation from
the (100) plane is increased, both frequencies increase (by &0)2%) and separate to
give a split of 0)02% at an angle of 43 as shown in Figure 12. For n"4, Figure 13
shows that the natural frequencies are split by 0)42% on the (100) plane and both



Figure 13. E!ect of deviation from the (100) plane on frequency factor for in-plane modes with
n"4.

TABLE 4

Non-dimensional natural frequency factors for out-of-plane modes for planes close to
the (100) plane

i"2 i"3 i"4

c
2

(deg) X
O1

X
O2

X
O1

X
O2

X
O1

X
O2

0 2)5127 2)6796 7)2198 7)2198 13)7689 13)7185
1 2)5128 2)6798 7)2205 7)2205 13)7705 13)7199
2 2)5132 2)6806 7)2227 7)2225 13)7752 13)7243
3 2)5138 2)6819 7)2264 7)2259 13)7830 13)7316
4 2)5146 2)6837 7)2316 7)2308 13)7939 13)7418
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frequencies increase with angle of deviation by &0)2% to give a split of 0)43% at
an angle of deviation of 43. The percentage splits re#ect the magnitude of the
relevant harmonic components.

5.2.1.2. Out-of-plane modes. Table 4 shows the variation in the natural frequencies
of the out-of-plane modes. The trend of variation is the same as those shown by the
in-plane mode frequencies. On the (100) plane, the natural frequencies for i"2 are
split by 6)42%. Both the upper and lower frequencies increase with angle of
deviation by 0)15 and 0)07% respectively. This gives a split of 6)5% when the angle
rotated is 43. The i"3 natural frequencies are equal on the (100) plane but separate
a little with increasing angle of deviation. The split is 0)01% of the mean value when
the angle is 43. The frequencies for i"4 are split by 0)37% on the (100) plane and
this increases to 0)38% at an angle of deviation of 43. The percentage splits in the



TABLE 5

Non-dimensional natural frequency factors for in-plane modes for planes close to the
(100) plane

n"2 n"3 n"4

c
1

(deg) c
2

(deg) X
I1

X
I2

X
I1

X
I2

X
I1

X
I2

1 0 2)5929 2)4294 7)1064 7)1064 13)597 13)654
0)866 0)5 2)5929 2)4294 7)1064 7)1064 13)597 13)654
0)707 0)707 2)5929 2)4294 7)1064 7)1064 13)597 13)654
0)5 0)866 2)5929 2)4294 7)1064 7)1064 13)597 13)654
0 1 2)5929 2)4294 7)1064 7)1064 13)597 13)654
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frequencies re#ects the magnitude of the relevant harmonic components of the
elastic moduli.

5.2.2. Combined rotations

Combinations of c
1

and c
2

which give resultant misalignment of 1, 2, 3 and 43
have also been investigated. For a given resultant misalignment angle, there are no
practically signi"cant variations in the frequency values for di!erent combinations
of c

1
and c

2
. This is illustrated in Table 5 for a resultant misalignment angle of 13.

To "ve signi"cant "gures, the values are the same as those obtained when a 13
rotation is applied about a single principal axis. The reason for this is illustrated by
examining the reciprocal of equation (23) with varying values for c

1
and c

2
. The

amplitudes of the variations are several orders of magnitude smaller than the
moduli values and hence are negligible.

6. CONCLUSION

This paper presents an analysis of the e!ects of anisotropy on the natural
frequencies of vibrating rings made from crystalline silicon, with particular
emphasis on rings whose planes lie close to the (111) and (100) planes. Expressions
are presented for the variations in material properties on these planes due to
anisotropy. The periodic directional variations in the material properties due to
anisotropy are shown to a!ect the natural frequencies of pairs of modes of the ring
in a way which depends on the number of nodal diameters of the modes in question.

For rings in the (111) plane, the modes occur in pairs of equal frequency since the
material properties are isotropic. Misalignment of the plane of the ring from this
plane introduces splits in the frequency pairs. The exact expressions for the elastic
moduli on planes which deviate by a small angle from the (111) plane contain 2h,
4h, 6h, 8h and higher order even harmonic components. It is shown that these
components will a!ect the frequencies of #exural modes with 2, 3, 4,2, etc., nodal
diameters respectively. The magnitude of the frequency splits depend on the
magnitude of the relevant harmonic.
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On the (100) plane the material properties are shown to contain 4h, 8h, 12h2
harmonics. Hence, rings in the (100) plane have frequencies that are split for modes
with 2, 4, 6,2, nodal diameters, but not in modes with 3, 5, 72 nodal diameters.
Misalignment from the (100) plane introduces additional harmonic components in
the material properties which will split the frequencies for modes with 3, 5,
72nodal diameters, but the splitting in these modes is smaller than in modes with
an even number of nodal diameters.

For the cases considered, the e!ects of anisotropy are most signi"cant for modes
with two nodal diameters. Analytical expressions have been developed which can
be used to provide simple, accurate estimates of these modes for rings which lie
close to the (111) plane.
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